Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9842, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684877

RESUMEN

In Romania, huge quantities of gangue material from the mining activity practiced in the past were improperly stored and led to the pollution of the environment. Thus, this work is framed to manage the sterile dump of the "Radeș" mine (Alba, Romania) through a 12-week phytoremediation process. The efficient use of Robinia pseudoacacia was studied through the implementation, at the laboratory level, of a phytoremediation experiment based on various variants prepared by mixtures of gangue material, uncontaminated soil, and dehydrated sludge. The prepared variants, all planted with R. pseudoacacia, were watered with tap water, potassium monobasic phosphate, and enzyme solution. The bioconcentration and translocation factors for lead showed values ˂ 1, which indicates a potential presence of an exclusion system for Pb or a reduced Pb bioavailability since the R. pseudoacacia accumulates high concentrations of metals absorbed on and inside the roots. For copper, both factors had values > 1 indicating the suitability of R. pseudoacacia to readily translocate copper into the epigean organs. In the investigated experimental conditions, the highest efficiency in the removal of copper (93.0%) and lead (66.4%) by plants was obtained when gangue material was not mixed with other materials and wetted with enzymatic solution.


Asunto(s)
Biodegradación Ambiental , Cobre , Plomo , Minería , Robinia , Contaminantes del Suelo , Robinia/metabolismo , Cobre/metabolismo , Plomo/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Rumanía , Raíces de Plantas/metabolismo
2.
Environ Pollut ; 342: 123050, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042473

RESUMEN

Interaction of different environmental constrains pose severe threats to plants that cannot be predicted from individual stress exposure. In this context, mercury (Hg), as a typical toxic and hazardous heavy metal, has recently attracted particular attention. Nitrogen (N2)-fixing legumes can be used for phytoremediation of Hg accumulation, whereas N availability could greatly affect its N2-fixation efficiency. However, information on the physiological responses to combined Hg exposure and excess N supply of woody legume species is still lacking. Here, we investigated the interactive effects of rhizobia inoculation, Hg exposure (+Hg), and high N (+N) supply, individually and in combination (+N*Hg), on photosynthesis and biochemical traits in Robinia pseudoacacia L. seedlings of two provenances, one from Northeast (DB) and one from Northwest (GS) China. Our results showed antagonistic effects of combined + N*Hg exposure compared to the individual treatments that were provenance-specific. Compared to individual Hg exposure, combined + N*Hg stress significantly increased foliar photosynthesis (+50.6%) of inoculated DB seedlings and resulted in more negative (-137.4%) δ15N abundance in the roots. Furthermore, combined + N*Hg stress showed 47.7% increase in amino acid N content, 39.4% increase in NR activity, and 14.8% decrease in MDA content in roots of inoculated GS seedlings. Inoculation with rhizobia significantly promoted Hg uptake in both provenances, reduced MDA contents of leaves and roots, enhanced photosynthesis and maintained the nutrient balance of Robinia. Among the two Robinia provenances investigated, DB seedlings formed more nodules, had higher biomass and Hg accumulation than GS seedlings. For example, total Hg concentrations in leaves and roots and total biomass of inoculated DB seedlings were 1.3,1.9 and 3.4 times higher than in inoculated GS seedlings under combined + N*Hg stress, respectively. Therefore, the DB provenance is considered to possess a higher potential for phytoremediation of Hg contamination compared to the GS provenance in environments subjected to N deposition.


Asunto(s)
Fabaceae , Mercurio , Rhizobium , Robinia , Robinia/metabolismo , Simbiosis , Mercurio/toxicidad , Mercurio/metabolismo , Biodegradación Ambiental , Nitrógeno/metabolismo , Plantones
3.
Chemosphere ; 346: 140619, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944768

RESUMEN

Urea is the most frequently used nitrogen (N) fertilizer worldwide. However, the mechanisms in plants to cope with excess urea are largely unknown, especially for woody legumes that can meet their N demand by their own N2-fixation capacity. Here, we studied the immediate consequences of different amounts of urea application and exposure duration on photosynthesis, N metabolism, and the activity of antioxidative enzymes of Robinia pseudoacacia seedlings. For this purpose, seedlings were grown for 3 months under normal N availability with rhizobia inoculation and, subsequently, 50 mg N kg-1 was applied to the soil twice with urea as additional N source. Our results show that excess urea application significantly promoted photosynthesis, which increased by 80.3% and 84.7% compared with CK after the 1st and 2nd urea applications, respectively. The increase in photosynthesis translated into an increase in root and nodule biomass of 88.7% and 82.0%, respectively, while leaf biomass decreased by 4.8% after the first application of urea. The N content in leaves was 92.6% higher than in roots, but excess urea application increased the N content of protein and free amino acids in roots by 25.0%, and 43.3%, respectively. Apparently, enhanced root growth and N storage in the roots constitute mechanisms to prevent the negative consequences of excess N in the shoot upon urea application. Nitrate reductase (NR) activity of leaves and roots increased by 74.4% and 26.3%, respectively. Glutathione reductase (GR) activity in leaves and roots was enhanced by 337% and 34.0%, respectively, but then decreased rapidly to the initial level before fertilization. This result shows that not only N metabolism, but also antioxidative capacity was transiently promoted by excess urea application. Apparently, excess urea application initially poses oxidative stress to the plants that is immediately counteracted by enhanced scavenging of reactive oxygen species via enhanced GR activity.


Asunto(s)
Robinia , Robinia/metabolismo , Plantones/metabolismo , Fotosíntesis , Suelo/química , Nitrógeno , Antioxidantes/metabolismo , Raíces de Plantas/metabolismo , Hojas de la Planta/metabolismo
4.
Sci Total Environ ; 899: 165665, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37478936

RESUMEN

Soil organic carbon (SOC) stabilization is vital for the mitigation of global climate change and retention of soil carbon stocks. However, there are knowledge gaps on how SOC sources and stabilization respond to vegetation restoration. Therefore, we investigated lignin phenol and amino sugar biomarkers, SOC physical fractions and chemical structure in one farmland and four stands of a Robinia pseudoacacia plantation. We observed that the content of SOC increased with afforestation, but the different biomarkers had different contributions to SOC. Compared to farmland, the contribution of lignin phenols to SOC decreased in the plantations, whereas there was no difference among the four stand ages, likely resulting from the balance between increasing lignin derivation input and increasing lignin degradation. Conversely, vegetation restoration increased the content of microbial necromass carbon (MNC) and the contribution of MNC to SOC, mainly because microbial residue decomposition was inhibited by decreasing the activity of leucine aminopeptidase, while microbial necromass preservation was promoted by adjusting soil variables (soil water content, clay, pH and total nitrogen). In addition, vegetation restoration increased the particulate organic carbon (POC), mineral-associated organic carbon (MAOC) pools and the O-alkyl C intensify. Overall, vegetation restoration affected SOC composition by regulating lignin phenols and microbial necromass and also altered SOC stabilization by increasing the physically stable MAOC pool during late afforestation. The results of this study suggest that more attention should be given to SOC sequestration and stability during late vegetation restoration.


Asunto(s)
Robinia , Suelo , Suelo/química , Carbono/análisis , Robinia/metabolismo , Lignina/metabolismo , Arcilla , Minerales/metabolismo , China
5.
Huan Jing Ke Xue ; 44(5): 2767-2774, 2023 May 08.
Artículo en Chino | MEDLINE | ID: mdl-37177949

RESUMEN

Nitrogen (N) deposition in the context of human activities continuously affects the carbon cycle of ecosystems. The effect of N deposition on soil organic carbon is related to the differential responses of different carbon fractions. To investigate the changes in soil organic carbon fraction and its influencing factors in the context of short-term N deposition, four N addition gradients:0 (CK), 1.5 (N1), 3 (N2), and 6 (N3) g·(m2·a)-1 were set up in acacia plantations based on field N addition experiments, and the soil physicochemical properties, microbial biomass, and enzyme activities were measured in June and September. The results showed that:① exogenous N input reduced soil pH, promoted the increase in soluble organic carbon content, and increased soil nitrogen effectiveness. ② Short-term N addition significantly reduced soil organic carbon content, and the response of each component of organic carbon to N addition was different. Among them, the content of easily oxidized organic carbon was significantly reduced and reached the lowest value under the N2 treatment, with 54.4% and 48.2% reduction compared with that of the control, respectively, and the content of inert organic carbon increased, although the increase was not significant. Nitrogen addition reduced the soil carbon pool activity and improved the stability of the soil carbon pool. Soil carbon pool activity reached its lowest under the N3 and N2 treatments, with a decrease of 53.3% and 52.80%, respectively, compared to that of the control. ③Random forest modeling indicated that the soil microbial biomass stoichiometry ratio, microbial biomass carbon, and AP were the key factors driving the changes in soil organic carbon activity under short-term N addition, explaining 65.96% and 66.68% of the changes in oxidizable organic carbon and inert organic carbon, respectively. Structural equation modeling validated the results of the random forest modeling, and soil microbial biomass stoichiometric ratios significantly influenced carbon pool activity. Short-term nitrogen addition changed soil microbial biomass and its stoichiometric ratio in the acacia plantation forest mainly through two pathways, i.e., increasing soil nitrogen effectiveness and promoting soil acidification and inhibiting extracellular carbon hydrolase activity, thus changing the soil carbon fraction ratio and participating in the soil organic carbon cycling process.


Asunto(s)
Ecosistema , Robinia , Humanos , Carbono/análisis , Robinia/metabolismo , Nitrógeno/análisis , Suelo/química , Microbiología del Suelo , Biomasa , China
6.
Oecologia ; 201(2): 565-574, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36637524

RESUMEN

Symbiotic nitrogen fixation (SNF) is a critical mechanism of ecosystem recovery, and in forests of the eastern United States, the most common tree species that supports SNF is black locust (Robinia pseudoacacia L.). Despite its prevalence, black locust's fixation strategy-whether it maintains fixation at a constant rate (obligate fixation) or reduces its fixation rate (facultative fixation)-is unknown. Here, we examined how nitrogen and light control SNF by black locust, by growing seedlings under two nitrogen levels and across four levels of light. Seedlings were harvested after 12 weeks to determine biomass changes, nodule activity, and photosynthetic rates. Black locust seedlings increased biomass growth with increasing light, but only in the absence of nitrogen addition, while seedling root:shoot (biomass) modestly declined with increasing light regardless of nitrogen level. We found that black locust behaved like a facultative fixer, and regulated fixation by excising or maintaining nodules, and by controlling nodule biomass and activity. Specifically, nitrogen addition reduced seedling investment in nodule biomass (g g-1) by 63%, and reduced seedling allocation to nitrogen fixation (µmol C2H4 g-1 h-1) by 66%. In contrast, light affected nitrogen fixation through two indirect pathways. First, light increased plant growth, and hence nitrogen demands, which caused an increase in nitrogen fixation proportional to biomass. Second, light increasd photosynthetic activity, which was positively associated with nodule activity, but only in the absence of nitrogen addition. Our findings for how black locust regulates SNF can improve predictions of ecosystem SNF under the changing environmental conditions.


Asunto(s)
Robinia , Árboles , Árboles/fisiología , Ecosistema , Nitrógeno/metabolismo , Fijación del Nitrógeno , Bosques , Plantones , Robinia/metabolismo
7.
Genes (Basel) ; 13(3)2022 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-35327995

RESUMEN

Tetraploid Robinia pseudoacacia L. is a difficult-to-root species, and is vegetatively propagated through stem cuttings. Limited information is available regarding the adventitious root (AR) formation of dark-pretreated micro-shoot cuttings. Moreover, the role of specific miRNAs and their targeted genes during dark-pretreated AR formation under in vitro conditions has never been revealed. The dark pretreatment has successfully promoted and stimulated adventitious rooting signaling-related genes in tissue-cultured stem cuttings with the application of auxin (0.2 mg L-1 IBA). Histological analysis was performed for AR formation at 0, 12, 36, 48, and 72 h after excision (HAE) of the cuttings. The first histological events were observed at 36 HAE in the dark-pretreated cuttings; however, no cellular activities were observed in the control cuttings. In addition, the present study aimed to uncover the role of differentially expressed (DE) microRNAs (miRNAs) and their targeted genes during adventitious root formation using the lower portion (1-1.5 cm) of tetraploid R. pseudoacacia L. micro-shoot cuttings. The samples were analyzed using Illumina high-throughput sequencing technology for the identification of miRNAs at the mentioned time points. Seven DE miRNA libraries were constructed and sequenced. The DE number of 81, 162, 153, 154, 41, 9, and 77 miRNAs were upregulated, whereas 67, 98, 84, 116, 19, 16, and 93 miRNAs were downregulated in the following comparisons of the libraries: 0-vs-12, 0-vs-36, 0-vs-48, 0-vs-72, 12-vs-36, 36-vs-48, and 48-vs-72, respectively. Furthermore, we depicted an association between ten miRNAs (novel-m0778-3p, miR6135e.2-5p, miR477-3p, miR4416c-5p, miR946d, miR398b, miR389a-3p, novel m0068-5p, novel-m0650-3p, and novel-m0560-3p) and important target genes (auxin response factor-3, gretchen hagen-9, scarecrow-like-1, squamosa promoter-binding protein-like-12, small auxin upregulated RNA-70, binding protein-9, vacuolar invertase-1, starch synthase-3, sucrose synthase-3, probable starch synthase-3, cell wall invertase-4, and trehalose phosphatase synthase-5), all of which play a role in plant hormone signaling and starch and sucrose metabolism pathways. The quantitative polymerase chain reaction (qRT-PCR) was used to validate the relative expression of these miRNAs and their targeted genes. These results provide novel insights and a foundation for further studies to elucidate the molecular factors and processes controlling AR formation in woody plants.


Asunto(s)
MicroARNs , Robinia , Almidón Sintasa , Perfilación de la Expresión Génica , Ácidos Indolacéticos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Robinia/genética , Robinia/metabolismo , Almidón Sintasa/genética , Tetraploidía , beta-Fructofuranosidasa/genética
8.
PLoS One ; 17(1): e0262278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34986177

RESUMEN

To select elite Robinia pseudoacacia L. germplasm resources for production, 13 phenotypes and three physiological indicators of 214 seedlings from 20 provenances were systematically evaluated and analyzed. The leaf phenotypic and physiological coefficients of variation among the genotypes ranged from 3.741% to 19.599% and from 8.260% to 42.363%, respectively. The Kentucky provenance had the largest coefficient of variation (18.541%). The average differentiation coefficients between and within provenances were 34.161% and 38.756%, respectively. These close percentages showed that R. pseudoacacia presented high genetic variation among and within provenances, which can be useful for assisted migration and breeding programs. Furthermore, based on the results of correlations, principal component analysis and cluster analysis, breeding improvements targeting R. pseudoacacia's ornamental value, food value, and stress resistance of were performed. Forty and 30 excellent individuals, accounting for 18.692% and 14.019%, respectively, of the total resources. They were ultimately screened, after comprehensively taking into considering leaf phenotypic traits including compound leaf length, leaflet number and leaflet area and physiological characteristics including proline and soluble protein contents. These selected individuals could provide a base material for improved variety conservation and selection.


Asunto(s)
Robinia/genética , Robinia/fisiología , Kentucky , Fenotipo , Fitomejoramiento/métodos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Robinia/metabolismo , Plantones/genética , Plantones/fisiología
9.
Ecotoxicol Environ Saf ; 210: 111878, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33418159

RESUMEN

Flavonoids participate in several plant processes such as growth and physiological protection in adverse environments. In this study, we investigated the combined effects of eCO2 and cadmium (Cd)-contaminated soils on the total flavonoid and monomer contents in the leaves of Robinia pseudoacacia L. seedlings. Elevated CO2, Cd, and eCO2+ Cd increased the total flavonoids in the leaves relative to the control, and eCO2 mostly increased (p < 0.05) the total flavonoid content under Cd exposure. Elevated CO2 increased (p < 0.05) robinin, rutin, and acacetin contents in the leaves of 45-day seedlings and decreased (p < 0.05) the content of robinin and acacetin at 90 and 135 d under Cd exposure except for robinin at day 45 under Cd1 and acacetin on day 135 under Cd1. Quercetin content decreased (p < 0.05) under the combined conditions relative to Cd alone. Kaempferol in the leaves was only detected under eCO2 on day 135. The responses of total chlorophyll, total soluble sugars, starch, C, N, S, and the C/N ratio in the leaves to eCO2 significantly affected the synthesis of total flavonoids and monomers under Cd exposure. Overall, rutin was more sensitive to eCO2+ Cd than the other flavonoids. Cadmium, CO2, and time had significant interactive effects on the synthesis of flavonoids in the leaves of R. pseudoacacia L. seedlings. Elevated CO2 may improve the protection and defense system of seedlings grown in Cd-contaminated soils by promoting the synthesis of total flavonoids, although robinin, rutin, quercetin, and acacetin yields may reduce with time. Additionally, increased Cd in the leaves suggested that eCO2 could improve the phytoremediation of Cd-contaminated soils.


Asunto(s)
Cadmio/toxicidad , Dióxido de Carbono , Flavonoides/metabolismo , Hojas de la Planta/efectos de los fármacos , Robinia/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Biodegradación Ambiental , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Robinia/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo
10.
Ecotoxicol Environ Saf ; 197: 110563, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32278824

RESUMEN

Sodium sulfide (Na2S) is usually used as an amendment in industrial sewage treatment. To evaluate the effects of Na2S on the growth of Robinia pseudoacacia (black locust), heavy metal immobilization, and soil microbial activity, the R. pseudoacacia biomass and nutrient content and the soil heavy metal bioavailability, enzyme activity, and arbuscular mycorrhizal (AM) fungal community were measured by a single-factor pot experiment. The Pb-Zn-contaminated soil was collected from a Pb-Zn mine that had been remediated by R. pseudoacacia for five years. Three pollution levels (unpolluted, mildly polluted, and severely polluted) were evaluated by the pollution load index. Na2S application increased the shoot biomass under severe and mild contamination. In soil, Na2S application decreased the bioavailable Pb and Zn contents under severe and mild contamination, which resulted in a decrease in the Pb and Zn content in R. pseudoacacia. However, Na2S application did not affect the total Pb content per plant and enhanced the total Zn content per plant because of the higher biomass of the plants under Na2S application. Increased phosphatase activity and increased available phosphorous content may promote the uptake of phosphorus in R. pseudoacacia. Moreover, Na2S application is beneficial to the diversity of AM fungi under mild and severe pollution. Overall, Na2S application has great potential for enhancing soil heavy metal immobilization, enhancing soil microbial activity, and improving the growth of R. pseudoacacia in polluted soils. Therefore, Na2S is suitable for use in Pb-Zn remediation to ameliorate environmental heavy metal pollution.


Asunto(s)
Metales Pesados/farmacocinética , Robinia/crecimiento & desarrollo , Microbiología del Suelo , Contaminantes del Suelo/farmacocinética , Sulfuros/farmacología , Biodegradación Ambiental , Disponibilidad Biológica , Biomasa , Plomo/farmacocinética , Micorrizas/clasificación , Micorrizas/efectos de los fármacos , Fósforo/metabolismo , Robinia/efectos de los fármacos , Robinia/metabolismo , Robinia/microbiología , Zinc/farmacocinética
11.
Sci Total Environ ; 703: 135613, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31761359

RESUMEN

As the driver of plantation ecosystem function, microorganisms can decompose plant residues and soil organic matter. To identify dynamics of microbial communities in litter and soil and its influence by vegetation and soil at regional scales, the plantations of Robinia pseudoacacia at different successional stages (13, 19, 29, and 44 y) was selected on the Loess Plateau. High-throughput sequencing of the 16S rRNA gene was used to examine bacterial communities in litter and soil, and changes in vegetation, litter, and soil characteristics were analyzed. With increase of stand age, coverage and biomass of understory vegetation increased significantly and peaked at 44-y. Concentrations of carbon (C), nitrogen (N), and phosphorus (P) in litter and soil increased significantly, whereas pH values decreased significantly. Composition and diversity of bacterial communities in litter and soil were significantly different. Diversity and richness of litter bacterial communities were higher than that of soils. Relative abundances of Actinobacteria and Proteobacteria in litter were higher than that in soil; relative abundance of Acidobacteria exhibited the reverse trend. The diversity and richness index of vegetation significantly affected that of litter bacterial communities. Soil C/P significantly affected the Simpson and Shannon index of soil bacterial communities. The C/P and pH of litter and soil were significantly correlated with bacterial composition, primarily including Actinobacteria, Acidobacteria, and Gemmatimonadetes. Diversity of litter bacterial communities was more sensitive to the diversity and richness of vegetation flora than that of soil in the succession of R. pseudoacacia. Canopy density, vegetation, and litter and soil nutrients might directly or indirectly affect bacterial communities. Carbon, phosphorus, and pH may be critical factors influencing the composition of bacterial communities in litter and soil.


Asunto(s)
Robinia/metabolismo , Microbiología del Suelo , Bacterias , Biomasa , Carbono , Bosques , Nitrógeno , Fósforo , Suelo/química
12.
J Chem Ecol ; 45(8): 657-666, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31407199

RESUMEN

The box tree moth, Cydalima perspectalis, is an invasive pest in Europe causing damage on Buxus species. In this study, we aimed to develop a "bisexual" lure to attract both female and male moths. Based on a previous screening bioassay we tested methyl salicylate, phenylacetaldehyde and eugenol as potential attractants in different combinations. The trapping results showed that both binary and ternary blends attracted male and female moths. Catches with these blends were comparable to catches with the synthetic pheromone. Subsequently we carried out single sensillum recordings, which proved the peripheral detection of the above-mentioned compounds on male and female antennae. To identify synergistic flower volatiles, which can be also attractive and can increase the trap capture, we collected flower headspace volatiles from 12 different flowering plant species. Several components of the floral scents evoked good responses from antennae of both females and males in gas chromatography-electroantennographic detection. The most active components were tentatively identified by gas chromatography coupled mass spectrometry as benzaldehyde, cis-ß-ocimene, (±)-linalool and phenethyl alcohol. These selected compounds in combination did not increase significantly the trap capture compared to the methyl salicylate- phenyacetaldehyde blend. Based on these results we discovered the first attractive blend, which was able to attract both adult male and female C. perspectalis in field conditions. These results will yield a good basis for the optimization and development of a practically usable bisexual lure against this invasive pest.


Asunto(s)
Conducta Animal/efectos de los fármacos , Mariposas Nocturnas/fisiología , Feromonas/farmacología , Monoterpenos Acíclicos , Animales , Eugenol/química , Eugenol/farmacología , Femenino , Flores/química , Flores/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Control de Insectos , Masculino , Monoterpenos/química , Monoterpenos/farmacología , Feromonas/análisis , Robinia/química , Robinia/metabolismo , Rosa/química , Rosa/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/farmacología
13.
Molecules ; 24(13)2019 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-31261846

RESUMEN

Honey is a natural sweetener composed mostly of sugars, but it contains also pollen grains, proteins, free amino acids, and minerals. The amounts and proportions of these components depend on the honey type and bee species. Despite the low content of honey protein, they are becoming a popular study object, and have recently been used as markers of the authenticity and quality of honey. Currently, the most popular methods of protein isolation from honey are dialysis against distilled water, lyophilization of dialysate, or various precipitation protocols. In this work, we propose a new method based on saturated phenol. We tested it on three popular polish honey types and we proved its compatibility with both 1D and 2D polyacrylamide gel electrophoresis (PAGE) and MS (mass spectrometry) techniques. The elaborated technique is also potentially less expensive and less time-consuming than other previously described methods, while being equally effective.


Asunto(s)
Miel/análisis , Fenoles/química , Proteínas de Plantas/aislamiento & purificación , Brassica napus/metabolismo , Electroforesis en Gel Bidimensional , Fagopyrum/metabolismo , Polonia , Robinia/metabolismo
14.
J Exp Bot ; 70(18): 4865-4876, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31056686

RESUMEN

Significant improvements to the centrifuge water-extraction method of measuring the percentage loss volume of water (PLV) and corresponding vulnerability curves (VCs) are reported. Cochard and Sperry rotors are both incapable of measuring the VCs of species with long vessels because of premature embolism induced by hypothetical nanoparticles that can be drawn into segments during flow measurement. In contrast, water extraction pushes nanoparticles out of the sample. This study focuses on a long-vessel species, Robinia pseudoacacia, for which many VCs have been constructed by different methods, and the daily water relations have been quantified. PLV extraction curves have dual Weibull curves, and this paper focuses on the second Weibull curve because it involves the extraction of water from vessels, as proven by staining methods. We demonstrate an improved water extraction method after evaporation correction that has accuracy to within 0.5%, shows good agreement with two traditional methods that are slower and less accurate, and is immune to nanoparticle artefacts. Using Poiseuille's Law and the geometry of vessels, we argue that the percentage loss of conductivity (PLC) equals 2PLV-PLV2 in a special case where all vessels, regardless of size, have the same vulnerability curve. In this special case, this equation predicts the data reasonably well.


Asunto(s)
Centrifugación/instrumentación , Robinia/metabolismo , Agua/metabolismo , Xilema/metabolismo , Botánica/instrumentación
15.
Chemosphere ; 197: 729-740, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29407837

RESUMEN

Heavy metals can cause serious contamination of soils, especially in mining regions. A detailed understanding of the effects of heavy metals on plants and root-associated microbial communities could help to improve phytoremediation systems. In this study, black locust (Robinia pseudoacacia) seedlings with or without rhizobial inoculation were planted in soils contaminated with different levels of heavy metals. Bacterial communities in rhizosphere and bulk soil samples were analyzed using 16S rRNA gene sequencing on the Illumina MiSeq platform and shotgun metagenome sequencing on the Illumina HiSeq platform. Soil bacterial communities varied significantly depending on the level of soil contamination, and planting also had some influence. Although inoculation of Mesorhizobium loti HZ76 (a natural microsymbiont of R. pseudoacacia) was a relatively minor factor, it did influence the soil bacterial community. Under the selective pressure, plant growth promotion-related biomarkers in the rhizosphere increased after inoculation compared with non-inoculated controls, especially those associated with Mesorhizobium, Variovorax, Streptomyces, and Rhodococcus genera. Genes encoding ATP-binding cassette transporters were up-regulated in the rhizosphere after inoculation compared with genes related to sulfur/nitrogen metabolism. These results provide insight into soil bacterial communities and their functions in the R. pseudoacacia rhizosphere in response to rhizobial inoculation and heavy metal contamination. This knowledge may prove useful for improving phytoremediation of metal-contaminated soils.


Asunto(s)
Biodegradación Ambiental , Metales Pesados/metabolismo , Robinia/metabolismo , Contaminantes del Suelo/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacterias/metabolismo , ARN Ribosómico 16S/genética , Rhizobium , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo/análisis
16.
J Hazard Mater ; 349: 215-223, 2018 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-29427972

RESUMEN

Few studies have explored the long-term effects of elevated atmospheric CO2 combined with lead (Pb) contamination on plants. The objective of this study was to examine the effects of 3 years of elevated CO2 (700 ±â€¯23 µmol mol-1) on Pb accumulation and plant defenses in leaves of Robinia pseudoacacia L. seedlings in exposed to Pb (500 mg kg-1 soil). Elevated CO2 increased Pb accumulation in leaves and Pb removal rate in soils. In plants exposed to Pb stress, total chlorophyll and carotenoid contents in leaves were lower under elevated CO2 than under ambient CO2, but seedling height and width increased under elevated CO2 relative to ambient CO2. Elevated CO2 significantly (p < .01) stimulated malondialdehyde content in leaves under Pb exposure. Superoxide dismutase and catalase activity increased significantly (p < .01), peroxidase activity decreased significantly (p < .01), and glutathione, cystine, and phytochelatin contents increased under elevated CO2 + Pb relative to Pb alone. Elevated CO2 stimulated the production of soluble sugars, proline, flavonoids, saponins, and phenolics in plants exposed to Pb stress. Ove rall, long-term elevation of CO2 increased Pb-induced oxidative damage in seedlings, but enhanced the phytoextraction of Pb from contaminated soils.


Asunto(s)
Dióxido de Carbono/toxicidad , Plomo/toxicidad , Robinia/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Carotenoides/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Glutatión/metabolismo , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Fitoquelatinas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Robinia/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Superóxido Dismutasa/metabolismo
17.
Sci Total Environ ; 613-614: 233-239, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28915459

RESUMEN

The relationships of CO2 assimilation under saturated-light conditions (Asat) with exposure- (AOTX, Accumulated Ozone exposure over a hourly Threshold of X ppb) and flux-based (PODY, Phytotoxic Ozone Dose over a hourly threshold Y nmol·m-2·s-1) O3 metrics was studied on three common urban trees, Fraxinus chinensis (FC), Platanus orientalis (PO) and Robinia pseudoacacia (RP). Parameterizations for a stomatal multiplicative model were proposed for the three species. RP was the species showing lower species-specific maximum stomatal conductance (gmax) and experiencing lower cumulative O3 uptake along the experiment, but in contrast it was the most sensitive to O3. PODY was slightly better than AOTX metric at estimating relative Asat (R-Asat)for PO and RB but not for FC. The best fittings obtained for the regressions between R-Asat and AOTX for FC, PO and RP were 0.904, 0.868, and 0.876, when the thresholds of X were 60ppb, 55ppb and 30ppb, respectively. However, AOT40 performed also well for all of them, with R2 always >0.83. For PODY, the highest R2 values for FC, PO and RB were 0.863, 0.897 and 0.911 at thresholds Y=7, 5 and 1nmolO3m-2s-1, respectively. Given the potentially higher O3 removal capacity of FC and PO by stomatal uptake and their lower sensitivity to this pollutant than RP, the former two species would be appropriate for urban gardens and areas where O3 levels are high. Parameterization and modeling of stomatal conductance for the main urban tree species may provide reliable estimations of the stomatal uptake of O3 and other gaseous pollutants by vegetation, which may support decision making on the most suitable species for green urban planning in polluted areas.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Dióxido de Carbono/metabolismo , Ozono/metabolismo , Árboles/metabolismo , Fraxinus/metabolismo , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo , Robinia/metabolismo
18.
BMC Genomics ; 18(1): 648, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830360

RESUMEN

BACKGROUND: Polyploidy is an important phenomenon in plants because of its roles in agricultural and forestry production as well as in plant tolerance to environmental stresses. Tetraploid black locust (Robinia pseudoacacia L.) is a polyploid plant and a pioneer tree species due to its wide ranging adaptability to adverse environments. To evaluate the ploidy-dependent differences in leaf mitochondria between diploid and tetraploid black locust under salinity stress, we conducted comparative proteomic, physiological, biochemical and ultrastructural profiling of mitochondria from leaves. RESULTS: Mitochondrial proteomic analysis was performed with 2-DE and MALDI-TOF-MS, and the ultrastructure of leaf mitochondria was observed by transmission electron microscopy. According to 2-DE analysis, 66 proteins that responded to salinity stress significantly were identified from diploid and/or tetraploid plants and classified into 9 functional categories. Assays of physiological characters indicated that tetraploids were more tolerant to salinity stress than diploids. The mitochondrial ultrastructure of diploids was damaged more severely under salinity stress than that of tetraploids. CONCLUSIONS: Tetraploid black locust possessed more tolerance of, and ability to acclimate to, salinity stress than diploids, which may be attributable to the ability to maintain mitochondrial structure and to trigger different expression patterns of mitochondrial proteins during salinity stress.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteómica , Robinia/metabolismo , Tolerancia a la Sal/genética , Tetraploidía , Antioxidantes/metabolismo , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/genética , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Mitocondrias/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Robinia/citología , Robinia/genética , Robinia/fisiología , Salinidad
19.
Chemosphere ; 183: 471-482, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28570890

RESUMEN

This research was carried out on plants Taraxacum officinale, Plantago lanceolata, Betula pendula and Robinia pseudoacacia growing in urban biotopes with different levels of heavy metal contamination in the city of Dabrowa Górnicza (southern Poland). Based on the pollution index, the highest heavy metal contamination was determined in the site 4 (connected with industry emitters) and 6 (high traffic). The metal accumulation index (MAI) values ranged within the biotopes in Dabrowa Górnicza between 7.3 and 20.6 for R. pseudoacacia, 4.71-23.1 for P. lanceolata, 4.68-28.1 for T. officinale and 10.5-27.2 for B. pendula. Increasing tendency in proline content in biotopes connected with high traffic was found in the leaves of investigated plants (except R. pseudoacacia). Similar tendency was observed for ascorbic acid content in the foliage of the plants as well as in T. officinalle in stands connected industrial emission. Non-protein thiols content increased especially in the leaves of R. pseudoacacia in biotopes with high traffic emissions as well as in T. officinale in stands connected with industry. The mean values of APTI (Air Pollution Tolerance Index) within the city of Dabrowa Górnicza for investigated plants were found in the following ascending order P. lanceolata < R. pseudoacacia < B. pendula < T. officinale. Among the investigated plants B. pendula and T. officinale may be postulated as appropriate plants in urban areas with considerable soil and air contamination, especially with heavy metals. The results indicate that species deemed tolerant according to APTI are suitable plants in barriers areas to combat atmospheric pollution.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Hojas de la Planta/metabolismo , Contaminantes Atmosféricos/metabolismo , Ácido Ascórbico/análisis , Betula/química , Betula/metabolismo , Ciudades , Metales Pesados/metabolismo , Modelos Biológicos , Hojas de la Planta/química , Plantago/química , Plantago/metabolismo , Polonia , Robinia/química , Robinia/metabolismo , Estaciones del Año , Contaminantes del Suelo/análisis , Especificidad de la Especie , Taraxacum/química , Taraxacum/metabolismo
20.
Arh Hig Rada Toksikol ; 67(3): 229-239, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27749263

RESUMEN

Phytoremediation is an emerging technology that employs higher plants to cleanup contaminated environments, including metal-polluted soils. Because it produces a biomass rich in extracted toxic metals, further treatment of this biomass is necessary. The aim of our study was to assess the five-year potential of the following native wild plants to produce biomass and remove heavy metals from a polluted site: poplar (Populus ssp.), ailanthus (Ailanthus glandulosa L.), false acacia (Robinia pseudoacacia L.), ragweed (Artemisia artemisiifolia L.), and mullein (Verbascum thapsus L). Average soil contamination with Pb, Cd, Zn, Cu, Ni, Cr, and As in the root zone was 22,948.6 mg kg-1, 865.4 mg kg-1, 85,301.7 mg kg-1, 3,193.3 mg kg-1, 50.7 mg kg-1, 41.7 mg kg-1,and 617.9 mg kg-1, respectively. We measured moisture and ash content, concentrations of Pb, Cd, Zn, Cu, Ni, Cr, and As in the above-ground parts of the plants and in ash produced by combustion of the plants, plus gross calorific values. The plants' phytoextraction and phytostabilisation potential was evaluated based on their bioconcentration factor (BCF) and translocation factor (TF). Mullein was identified as a hyperaccumulator for Cd. It also showed a higher gross calorific value (19,735 kJ kg-1) than ragweed (16,469 kJ kg-1).The results of this study suggest that mullein has a great potential for phytoextraction and for biomass generation, and that ragweed could be an effective tool of phytostabilisation.


Asunto(s)
Biodegradación Ambiental , Intoxicación por Metales Pesados , Metales Pesados/metabolismo , Raíces de Plantas/metabolismo , Intoxicación/metabolismo , Contaminantes del Suelo/metabolismo , Ailanthus/metabolismo , Artemisia , Monitoreo del Ambiente , Populus/metabolismo , Robinia/metabolismo , Serbia , Verbascum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...